The G-biliaison Class of Symmetric Determinantal Schemes

نویسنده

  • ELISA GORLA
چکیده

We consider a family of schemes, that are defined by minors of a homogeneous symmetric matrix with polynomial entries. We assume that they have maximal possible codimension, given the size of the matrix and of the minors that define them. We show that these schemes are G-bilinked to a linear variety of the same dimension. In particular, they can be obtained from a linear variety by a finite sequence of ascending G-biliaisons on some determinantal schemes. We describe the biliaisons explicitely in the proof of Theorem 2.3. In particular, it follows that these schemes are glicc

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Divisors and Biliaison

We extend the theory of generalized divisors so as to work on any scheme X satisfying the condition S2 of Serre. We define a generalized notion of Gorenstein biliaison for schemes in projective space. With this we give a new proof of the theorem of Gaeta, that standard determinantal schemes are in the Gorenstein biliaison class of a complete intersection.

متن کامل

A generalized Gaeta’s Theorem

We generalize Gaeta’s Theorem to the family of determinantal schemes. In other words, we show that the schemes defined by minors of a fixed size of a matrix with polynomial entries belong to the same G-biliaison class of a complete intersection whenever they have maximal possible codimension, given the size of the matrix and of the minors that define them.

متن کامل

G-biliaison of Ladder Pfaffian Varieties

The ideals generated by pfaffians of mixed size contained in a subladder of a skew-symmetric matrix of indeterminates define arithmetically Cohen-Macaulay, projectively normal, reduced and irreducible projective varieties. We show that these varieties belong to the G-biliaison class of a complete intersection. In particular, they are glicci.

متن کامل

Symmetric Ladders and G-biliaison

We study the family of ideals generated by minors of mixed size contained in a ladder of a symmetric matrix from the point of view of liaison theory. We prove that they can be obtained from ideals of linear forms by ascending G-biliaison. In particular, they are glicci.

متن کامل

A Class of Nested Iteration Schemes for Generalized Coupled Sylvester Matrix Equation

Global Krylov subspace methods are the most efficient and robust methods to solve generalized coupled Sylvester matrix equation. In this paper, we propose the nested splitting conjugate gradient process for solving this equation. This method has inner and outer iterations, which employs the generalized conjugate gradient method as an inner iteration to approximate each outer iterate, while each...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006